Security+ Last Minute Notes

```
1.1 Security Controls [sep]
```

◆ Technical = Firewall & Encryption ↔ P [] (Blocks hackers & protects data from unauthorized access)

◆ Managerial = Security Policies & Compliance Rules ■(*Defines who gets access, password policies, and security training*)

• Operational = Log Monitoring & Incident Response **Selection** (*Tracks login attempts, detects threats, and responds to breaches*)

Physical = Biometric Scanners & Surveillance centers and monitors security with cameras)

Quick Memory Trick :

- Preventive = Firewall & Antivirus
- Deterrent = Account Lockout 🔞
- Detective = SIEM & IDS \bigcirc
- Corrective = Patching & Backups
- Compensating = MFA & VPN
- Directive = Security Policies II

Quick Memory Tricks for 1.2 🚀

CIA Triad (Confidentiality, Integrity, Availability) 🎙

🔷 Lock 🗎 - Seal 🔳 - Key 🔑

• Confidentiality = Lock \rightarrow Only authorized users access data (Encryption, MFA)

• Integrity = Seal → Data stays unchanged & trustworthy (Hashing, Digital Signatures)

• Availability = Key → Systems & data are always accessible (Backups, Load Balancing)

Non-repudiation (No Denying Actions) 💹

"Signed & Verified"

• Like a **receipt proving a transaction**, **digital signatures & logs** prove who did what.

AAA (Authentication, Authorization, Accounting) 🎤

- "Who You Are, What You Can Do, What You Did"
- Authentication = Who you are (MFA, Passwords, Biometrics)
- Authorization = What you can do (RBAC, ACLs)
- Accounting = What you did (SIEM Logs, Auditing)

Gap Analysis (Find Weak Spots) 🙏

"Spot the Leaks"

• Compare security policies vs. actual practices to find gaps & improve defenses.

Zero Trust Model (Never Trust, Always Verify)

- "Checkpoint Everywhere"
- **Control Plane**: Decides security policies (Adaptive Identity, Policy Engine)

• Data Plane: Enforces them at access points (Implicit Trust Zones, Policy Enforcement)

Physical Security (Prevent Physical Breaches) 🚧

- "No Easy Entry"
- **Barriers = Bollards, Fencing** ^{##} (Prevent unauthorized vehicles & people)
- **Detection = Cameras, Guards** (Monitor for threats)
- **Verification = Access Badge**, **Vestibule** $\stackrel{P}{\sim}$ (Only approved people enter)
- Sensors = Infrared, Pressure, Microwave 就 (Detect intrusions)

Deception & Disruption (Trap Hackers) 😼

- "Fake Treasure Chest"
- **Honeypot** $\overline{\mathbf{9}}$ = Fake system to lure attackers
- **Honeynet (()** = Network of honeypots
- Honeyfile 📁 = Fake file to detect unauthorized access
- Honeytoken P = Bait credentials to track intrusions

Now it's short, visual, and easy to remember! Let me know if you want tweaks! **%**

Quick Memory Tricks for 1.3 (Change Management & Security) 🚀

Business Processes Impacting Security 😂

"Plan Before You Change"

- Approval Process
 → Get permission first (Managers sign off before big updates)
- Ownership I → Who's responsible (Who fixes issues if something breaks?)
- Stakeholders **1** → Who's affected (Users, IT, Security Teams)
- Impact Analysis ▲ → What could go wrong? (Testing before deployment)
- Test Results II → Validate fixes (If it works in a test, it works in production)
- Backout Plan to Rollback strategy (Undo changes if things go wrong)
- Maintenance Window (□) → Scheduled changes (Update at low-traffic hours)
- Standard Operating Procedure (SOP) → Follow a guide (Step-by-step change process)

Technical Implications 🏶

"Security Rules for Smooth Changes"

- Allow Lists / Deny Lists → Control access (Only trusted apps/users allowed)
- Restricted Activities $\bigcirc \rightarrow$ No risky changes (Limit unauthorized modifications)
- **Downtime** $\overline{Z} \rightarrow$ Plan disruptions (Schedule system updates when traffic is low)

- Legacy Applications ≦ → Old software risk (Outdated apps = security holes)
- Dependencies → If A breaks, B fails (Software updates affect connected systems)

Documentation

"Write It Down, Keep It Safe"

- Updating Diagrams → Keep system maps current (Know what connects to what)
- Updating Policies/Procedures → Ensure rules match reality (Security policies evolve)

Version Control 😂

"Track Every Change"

- Keep backup versions of software & settings (Rollback if needed)
- Git & Configuration Management Tools ensure no changes are lost

Quick Recap:

- Plan Before You Change 📝 (Approval, Impact Analysis, Backout Plan)
- Security Rules for Smooth Changes 😂 (Allow Lists, Downtime, Legacy Risks)
- Write It Down, Keep It Safe (Documentation, Policy Updates)
- Track Every Change 😂 (Version Control, Backups)

Quick Memory Tricks for 1.4 (Cryptographic Solutions) 🚀

Public Key Infrastructure (PKI) 🤎

- "The Lock & Key System"
 - **Public Key** → Open for everyone (**Used for encrypting messages**)
 - Private Key are → Secret & secure (Used for decrypting messages)

Key Escrow → Backup key storage (A trusted third party holds copies in case of loss)

Encryption (Data Protection) 🔐

"Layers of Protection"

- Full-Disk → Encrypts the entire system (BitLocker, FileVault)
- **Partition** [™] → Encrypts specific sections (Linux LUKS)
- File → Encrypts individual files (EFS on Windows)
- Volume ♥ → Encrypts storage drives (Veracrypt, LUKS)
- Database II → Encrypts structured data (Transparent Data Encryption (TDE))
- **Record ■** → Encrypts specific database fields (**Credit card details encryption**)
- Transport ⓒ → Encrypts data in motion (TLS, VPN, SSH)
- Asymmetric $\swarrow \rightarrow$ Uses two keys (SSL/TLS, RSA)
- Symmetric extit{eq} → Uses one key (AES, DES)
- Key Exchange ⓒ → Securely share keys (Diffie-Hellman)
- Algorithms $\blacksquare \rightarrow$ Encryption formulas (AES, RSA, ECC)
- Key Length → The longer, the stronger (256-bit AES is stronger than 128-bit)

Cryptographic Tools %

"Hardware for Extra Security"

- Trusted Platform Module (TPM) → Chip for storing keys securely (Used in BitLocker)
- Key Management System → Controls key storage & access (AWS KMS, Azure Key Vault)
- Secure Enclave i → Isolated environment for sensitive operations (Apple Secure Enclave, Intel SGX)

Obfuscation (Hiding Data) 월

"Hide & Seek for Security"

- Tokenization II → Replaces sensitive data with tokens (Credit card tokenization in payment systems)
- Data Masking ¹/_∞ → Hides real data for testing (**Showing only last 4 digits of SSN: ***-1234)

Other Cryptographic Concepts 😔

"Extra Security Layers"

- Hashing $\square \rightarrow$ One-way encryption for integrity (SHA-256, MD5)
- Salting □ → Adds random values to passwords before hashing (Prevents rainbow table attacks)
- Digital Signatures → Verifies authenticity (Used in emails, documents, and SSL/TLS certificates)
- Key Stretching
 → Strengthens weak passwords (PBKDF2, bcrypt, Argon2)
- Blockchain → Secure, decentralized ledger (Used in cryptocurrencies & secure transactions)
- Open Public Ledger □ → Everyone can verify transactions (Bitcoin blockchain transparency)

Certificates (Digital Identity Verification)

- "The Online Passport"
 - Certificate Authorities (CAs) <u>m</u> → Trusted organizations issuing digital certificates (DigiCert, Let's Encrypt)
 - Certificate Revocation Lists (CRLs) S → List of revoked certificates (If a cert is compromised)
 - Online Certificate Status Protocol (OCSP) → Checks certificate validity in realtime

- Third-Party ^{>>} → Issued by a trusted CA (Used for SSL/TLS certificates)
- Root of Trust ♥ → The highest authority in a PKI chain (Root CA validates all other certs)
- Certificate Signing Request (CSR) \longrightarrow A request to get a certificate from a CA
- **Wildcard Certificate* → Covers **multiple subdomains** under one cert (**Example**: *.example.com)
- ♀ Quick Recap:
- PKI = Lock & Key (Public, Private, Backup Keys)
- Encryption = Layers of Security (Disk, File, Transport, Keys)
- % Tools = Extra Security (TPM, HSM, Secure Enclave)
- Notext Strain and Steganography, Tokenization, Masking)
- Hashing & Salting = Secure Passwords & Integrity
- Digital Signatures = Verify Authenticity
- \mathcal{O} Blockchain = Secure, Decentralized Transactions
- Certificates = Online Passport (CA, CRL, OCSP, Wildcard Certs)

2.1 Threat Actors & Motivations (Quick Notes) 🚿

Threat Actors (Who's Attacking?)

- Nation-State \bigcirc \rightarrow Government-backed cyberattacks (espionage, sabotage)
- Unskilled Attacker $\mathbb{A} \rightarrow$ "Script kiddie" using premade tools, no deep skills
- Hacktivist $\stackrel{\text{\tiny blue}}{\to}$ Motivated by ideology, protests online (Anonymous)
- Insider Threat I → Employee leaks/damages data (malicious or accidental)
- Organized Crime [▲] → Cyber gangs targeting businesses for money (ransomware)
- Shadow IT ^{III} → Unauthorized tech used by employees (risking security)

Attributes of Attackers

• Internal vs. External $\bigcirc \rightarrow$ Employee vs. outsider attack

- **Resources** $\leq \rightarrow$ Well-funded (nation-state) vs. low-budget (script kiddie)
- Skill Level $\textcircled{O} \rightarrow$ Low (amateurs) to high (APT Advanced Persistent Threat)

Motivations (Why Attack?)

- **Data Exfiltration** \overrightarrow{P} \rightarrow Stealing sensitive info (trade secrets, PII)
- **Espionage** \square \rightarrow Spying (nation-state, corporate spying)
- Service Disruption ^{##} → DDoS, ransomware (cripple systems)
- Blackmail 🤐 → Leaking data unless paid (extortion)
- Financial Gain $\bowtie \rightarrow$ Cybercrime for profit (credit card fraud, ransomware)
- Philosophical/Political Beliefs [©] → Hacktivism (Anonymous, Wikileaks)
- **Ethical** $\stackrel{6}{=}$ \rightarrow White-hat hacking (penetration testing, bug bounties)
- **Revenge** > Disgruntled employee, personal vendetta
- **Disruption/Chaos** $\bowtie \rightarrow$ Just to cause damage (trolls, cyber vandals)
- War $\Join \rightarrow$ Cyber warfare between nations

Skim-friendly Recap:

- Who? Nation-state, Hacktivists, Insiders, Cybercriminals 🔧 💰
- How? Internal vs. External, Skilled vs. Unskilled <a>♥
- Why? Steal, Spy, Disrupt, Blackmail, Money, Politics, Revenge 코 💷 🔶

2.2 Threat Vectors & Attack Surfaces (Quick Notes) 🚀

Threat Vectors (How Attacks Happen)

- Message-Based → Phishing (Email), Smishing (SMS), Vishing (Voice), IM attacks
- File-Based $\square \rightarrow$ Infected PDFs, Office macros, executable malware
- Voice Call S→ Vishing (fraud calls, fake IT support)
- **Removable Device** $\square \rightarrow USB$ drives spreading malware
- Vulnerable Software → Outdated, unpatched apps (client vs. agentless risks)

• Unsupported Systems apps) → Old OS, end-of-life software (Windows XP, legacy apps)

Unsecure Networks (Exposed Entry Points)

- Wireless $\checkmark \rightarrow$ Open Wi-Fi, weak encryption (WEP, WPA2)
- Wired \checkmark \rightarrow Unmonitored LAN ports, rogue devices
- **Bluetooth** \bigcirc \rightarrow Bluejacking, Bluesnarfing (hacking Bluetooth connections)
- **Open Ports** → Unused but exposed services (RDP, Telnet)
- **Default Credentials** \nearrow \rightarrow Factory-set passwords left unchanged

🔷 Supply Chain Attacks 🕍

- MSPs & Vendors [¬] → Attackers exploit trusted third-party providers
- Software Dependencies ♥ → Injecting malicious code into legit updates

🔷 Human-Based Attacks (Social Engineering) 😼

- Phishing $A_2 \rightarrow$ Fake emails tricking users into clicking malicious links
- Vishing $\checkmark \rightarrow$ Fake phone calls impersonating IT or banks
- Smishing → Fraudulent SMS messages (bank scams)
- **Misinformation** $\blacksquare \rightarrow$ Spreading false info to manipulate users
- Impersonation $\texttt{f} \rightarrow \text{Acting as a trusted person (CEO fraud, tech support scams)}$
- Business Email Compromise (BEC) [™] → Fake invoices, wire transfer fraud
- **Pretexting** $\stackrel{\text{Rel}}{\rightarrow}$ Creating a believable lie to trick someone into sharing data
- Watering Hole $a \rightarrow A$ Hacking a site frequented by the target
- **Brand Impersonation** \bigcirc \rightarrow Fake websites mimicking real companies
- **Typosquatting** $\triangleq \rightarrow$ Using misspelled domain names (ex: g00gle.com)

- Message Attacks \rightarrow Phishing, Smishing, Vishing
- **Exploits** \rightarrow Files, Images, USBs, Old Software
- Weak Networks \rightarrow Open Wi-Fi, Bluetooth hacks, Default Passwords $\square P$
- Supply Chain Risks \rightarrow MSPs, Vendor Breaches
- Social Engineering \rightarrow Impersonation, CEO Fraud, Typosquatting $^{\text{R}}$

2.3 Types of Vulnerabilities (Quick Notes) 🚿

Application Vulnerabilities —

- Memory Injection ^{SQ} → Injecting malicious code into memory (heap/shellcode attacks)
- **Buffer Overflow** $\not{\approx} \rightarrow$ Overloading memory to crash or hijack programs
- Race Conditions [™] → Exploiting timing flaws in execution
 - TOC/TOU \overline{Z} → Changing data between check & execution (time gap attacks)
- Malicious Update $\mathcal{K} \rightarrow$ Fake software updates installing malware
- 🔷 OS-Based Vulnerabilities 🖆
 - Unpatched OS ⓒ → Missing security updates = easy exploits
 - **Privilege Escalation** \blacktriangle \rightarrow Gaining admin access through weak permissions

Web-Based Vulnerabilities

- SQL Injection (SQLi) $\square \rightarrow$ Injecting SQL commands to steal or modify data
- Cross-Site Scripting (XSS) $\gg \rightarrow$ Injecting malicious scripts into websites

🕈 Hardware Vulnerabilities 💻

- Firmware Attacks $\checkmark \rightarrow$ Exploiting low-level system software
- End-of-Life Risks \land \rightarrow No security updates for old devices
- Legacy Systems $\widehat{\mathbf{II}} \rightarrow$ Unsupported tech still in use (Windows XP, old routers)

🔷 Virtualization Risks 🔼

- VM Escape $\widehat{=} \rightarrow$ Breaking out of a virtual machine to access the host
- **Resource Reuse** \bigcirc \rightarrow Leaking sensitive data across VMs

Cloud-Specific Vulnerabilities

- **Misconfigured Storage** \overrightarrow{P} \rightarrow Publicly exposed S3 buckets, Azure blobs
- Weak API Security $\nearrow \rightarrow$ Poorly secured cloud API endpoints
- 🔷 Supply Chain Attacks 🕍
 - Service Provider Risk \not \rightarrow Attackers exploit third-party vendors

- Hardware/Software Breach
 [™] → Pre-installed malware in devices or software updates
- 🔷 Cryptographic Weaknesses 🔑
 - Weak Encryption $\widehat{} \rightarrow$ Outdated algorithms (MD5, DES)
 - Key Exposure $P \rightarrow$ Poor key management leading to leaks
- 🕈 Misconfiguration Risks 虊
 - **Default Settings Left Unchanged** \checkmark \rightarrow Factory passwords, open admin panels
 - Unrestricted Permissions $\mathscr{G} \rightarrow$ Overly broad access to systems & files
- 🕈 Mobile Device Vulnerabilities 📱
 - Side Loading → Installing apps from untrusted sources
 - Jailbreaking/Rooting \square \rightarrow Removing OS security controls for full access
- 🔷 Zero-Day Vulnerabilities 🛣
 - Unknown Exploits $\square \rightarrow$ No patch exists yet, making systems vulnerable

Skim-friendly Recap:

- Apps ➡ → Buffer Overflow, Injection Attacks, Malicious Updates
- OS $\stackrel{f}{i} \rightarrow$ Privilege Escalation, Unpatched Systems
- Web $\bigoplus \rightarrow$ SQLi, XSS
- Virtualization $\square \rightarrow VM$ Escape, Resource Reuse
- Cloud [△] → Misconfigured Storage, Weak APIs
- Supply Chain 🕍 → Vendor & Software Risks
- **Crypto** $\stackrel{P}{\sim}$ \rightarrow Weak Encryption, Key Leaks
- Misconfiguration [™] → Default Settings, Open Access
- Mobile \blacksquare \rightarrow Jailbreaking, Side Loading
- Zero-Day $\overline{\mathbb{Z}} \to \text{Exploits with No Patch}$

2.4 Indicators of Malicious Activity (Quick Notes) 🚀

🔷 Malware Attacks (Malicious Software) 戁

- Ransomware $\overset{\bullet}{\mathbb{S}} \rightarrow$ Encrypts files, demands payment
- Trojan $\stackrel{\text{Re}}{\rightarrow}$ Disguised as legit software, opens backdoors
- Worm $\mathbb{N} \to$ Spreads across networks without user action
- **Spyware** $\bullet \bullet \to$ Secretly collects user data (keyloggers, screen captures)
- Bloatware → Unwanted, resource-draining software
- Virus [●] → Self-replicating, spreads through files
- Keylogger [—] → Records keystrokes to steal passwords
- Logic Bomb → Triggers at a set condition/time
- Rootkit 🐸 → Hides deep in OS, gives attackers admin control

🔷 Physical Attacks 🏴

- Brute Force $\checkmark \rightarrow$ Repeated password guessing
- **RFID Cloning** X → Duplicates keycards/badges
- Environmental >> → Overheating, humidity damage

🔷 Network Attacks 🌐

- DDoS 🚀 → Overwhelms a system (Amplified, Reflected)
- DNS Attacks a → Poisoning, hijacking domain traffic
- Wireless Attacks $\blacksquare \rightarrow$ Rogue APs, Evil Twin, Deauth attacks
- **On-Path (MITM)** \ni \rightarrow Intercepts communications
- Credential Replay @ → Reusing stolen credentials
- Malicious Code $\blacksquare \rightarrow$ Embedded scripts in network traffic

Application Attacks

- Injection / → SQLi, Command Injection (malicious input)
- **Buffer Overflow** $\not{\approx} \rightarrow$ Overloading memory to take control
- **Replay** ⓒ → Repeating valid data to gain access
- **Privilege Escalation** $\Box \rightarrow$ Gaining unauthorized admin rights
- Forgery *>* → Fake data requests (CSRF, email spoofing)

- Directory Traversal *→* Accessing restricted files
- 🔷 Cryptographic Attacks 🔑
 - **Downgrade** $\square \rightarrow$ Forces weaker encryption
 - Collision [©] → Two different inputs create the same hash
 - Birthday Attack [@] → Exploits hash probability for cracks
- 🔷 Password Attacks 🔒
 - **Spraying** ^I → Tries common passwords across many accounts
 - Brute Force $\checkmark \rightarrow$ Rapid guessing to crack passwords

🔷 Indicators of Compromise (Red Flags) 🚨

- Account Lockout ⁽) → Multiple failed login attempts
- Concurrent Session Usage → Same account logged in from different places
- Impossible Travel $\stackrel{>}{\sim}$ \rightarrow Login from two distant locations in a short time
- **Resource Consumption ■** → Unusual CPU/memory usage

- **Published/Documented I**→ Data leaks, public security warnings
- Missing Logs \times \rightarrow Evidence tampering

- Malware 🕷 → Ransomware, Trojan, Worm, Virus, Keylogger
- Physical Attacks I → Brute Force, RFID Cloning
- Network ⊕ → DDoS, DNS Poisoning, MITM
- Apps ➡ → SQLi, Buffer Overflow, Privilege Escalation
- **Crypto** $\nearrow \rightarrow$ Downgrade, Collision, Birthday

- **Passwords** $\widehat{}$ \rightarrow Spraying, Brute Force
- Indicators ^{III} → Lockouts, High Resource Use, Impossible Travel

2.5 Mitigation Techniques (Quick Notes) 🚀

🔷 Malware Mitigation 🇯

- Endpoint Protection (EPP/EDR) ♥ → Antivirus, behavior-based detection
- Application Whitelisting $\blacksquare \rightarrow$ Only allow trusted apps
- Patch Management \bigcirc \rightarrow Regular updates to fix vulnerabilities
- User Training $\clubsuit \rightarrow$ Prevent phishing & social engineering
- 🕈 Physical Security Mitigation 🔒
 - Strong Authentication $P \rightarrow$ Multi-Factor Authentication (MFA) for access
 - **RFID Shielding** ♥ → Protects ID cards from cloning
 - Environmental Controls >> → Cooling, fire suppression systems

Network Mitigation

- DDoS Protection **%** → Rate limiting, load balancing, traffic filtering
- **DNS Security** $\square \rightarrow$ DNS filtering, DNSSEC (prevents spoofing)
- Wireless Security $\mathbb{X} \to WPA3$, MAC filtering, disable SSID broadcast
- Zero Trust Architecture $\emptyset \rightarrow$ Never trust, always verify

🕈 Application Security Mitigation 💻

- Input Validation ✓ → Blocks SQLi, XSS attacks
- Secure Coding Practices $\mathscr{K} \rightarrow$ Follow OWASP guidelines
- Least Privilege Access $P \rightarrow$ Restrict user permissions
- Web Application Firewall (WAF) $\diamond \rightarrow$ Protects against web-based attacks

🔷 Cryptographic Security 🔑

- Strong Encryption \land \rightarrow Use AES-256, TLS 1.3
- **Regular Key Rotation** \bigcirc \rightarrow Prevents key reuse attacks
- Hashing & Salting $\square \rightarrow$ Secures stored passwords

🔷 Password Security 🔒

- MFA \nearrow \rightarrow Extra authentication layer
- **Password Managers** *[™]* → Strong, unique passwords
- Account Lockout $\bigcirc \rightarrow$ Blocks brute force attempts

Skim-friendly Recap:

- Malware 🧖 → EDR, Patching, User Training
- Physical 🗎 → MFA, RFID Shielding, Cooling
- Network ⊕ → DDoS Protection, DNS Security, Zero Trust
- Apps ➡ → Input Validation, Secure Coding, WAF
- Crypto $\nearrow \rightarrow$ AES-256, Key Rotation, Hashing
- **Passwords** \rightarrow MFA, Password Managers, Lockouts

3.1 Security Architecture Models (Quick Notes) 🚿

Architecture & Infrastructure Models III

- Cloud \bigcirc \rightarrow Shared responsibility, security varies by provider (AWS, Azure, GCP)
 - **Hybrid** $\stackrel{\text{\tiny{O}}}{\rightarrow}$ Mix of cloud & on-premises
 - Third-party Vendors \bigcirc \rightarrow Risk from external service providers
- Serverless
 → No traditional servers, security depends on cloud provider (AWS Lambda)
- **Microservices** $\mathcal{O} \rightarrow$ Small, independent app components (API security is key)
- Network Infrastructure ⊕ →

- **Physical Isolation (Air-gapped)** $\checkmark \rightarrow$ No external connectivity (nuclear plants)
- Logical Segmentation \bigcirc \rightarrow VLANs, firewalls to separate traffic
- Software-Defined Networking (SDN) ♣ → Centralized network control (programmable)
- On-Premises III → Full control but high maintenance costs
- Centralized vs. Decentralized ♣ → One control center vs. multiple independent nodes
- Containerization $\widehat{\mathbf{v}} \rightarrow$ Isolated applications (Docker, Kubernetes)
- Virtualization → Multiple virtual machines on one physical host (VMware, Hyper-V)
- IoT → Networked smart devices (security concerns: weak passwords, unpatched firmware)
- ICS/SCADA ⁴ → Industrial control systems (power grids, water plants) with critical security needs
- Embedded Systems $\checkmark \rightarrow$ Fixed-function devices (routers, smart appliances)
- High Availability ⓒ → Redundant systems for zero downtime
- Security Considerations
 - Availability $\overline{Z} \rightarrow$ Ensure systems stay online (redundancy, failover)
 - **Resilience** $\stackrel{l}{\frown} \rightarrow$ Ability to **withstand** & **recover** from attacks

- Cloud \bigcirc \rightarrow Shared security, Hybrid risks, Third-party concerns
- IaC & Serverless $\blacksquare \neq \rightarrow$ Automation, but cloud-dependent security
- **Microservices & Containers** $\widehat{P} \rightarrow API$ security, isolation risks
- **Network** ⊕ → Segmentation, SDN, Air-gapped for security
- IoT & ICS $\checkmark \neq \rightarrow$ Unpatched firmware, high-risk industrial systems
- **RTOS & Embedded** \checkmark \rightarrow Specialized systems with unique security needs
- Availability & Resilience $\textcircled{C} \rightarrow Uptime \&$ recovery-focused design

3.2 Securing Enterprise Infrastructure (Quick Notes) 🚀

Infrastructure Considerations

- Device Placement [↑] → Keep critical systems in secured areas (data center, locked cabinets)
- Attack Surface → Reduce exposure by disabling unnecessary services & ports
- **Connectivity** [⊕] → Secure wired/wireless links (VPN, encryption)
- 🔷 Failure Modes 🕃
 - Fail-Open \blacksquare \rightarrow System remains open during failure (risk: security bypass)
 - Fail-Closed *G* → System shuts down when failure occurs (risk: availability issues)

🔷 Device Attributes 虊

- Active vs. Passive $\mathbb{N} \rightarrow$
 - \circ Active (inline) → Filters traffic (IPS, Firewalls)
 - **Passive** (tap/monitor) → Only **observes traffic** (IDS, Logging tools)

🕈 Network Appliances 🌐

- Jump Server $\mathscr{G} \rightarrow$ Secure entry point for admin access (bastion host)
- **Proxy Server** \bigcirc \rightarrow Filters web traffic (anonymity, security)
- IPS/IDS ♥ → IPS (blocks), IDS (detects) threats
- Load Balancer $4/2 \rightarrow$ Distributes traffic for availability

- Sensors $\mathbb{N} \to$ Monitor traffic, detect anomalies
- 🔷 Port Security 📕
 - 802.1X III → Authenticates devices before network access
 - EAP *P* → Secure authentication for Wi-Fi

🔷 Firewall Types 🤚

- WAF \bigoplus \rightarrow Blocks web-based attacks (SQLi, XSS)
- UTM $\stackrel{\text{lef}}{\text{lef}} \rightarrow \text{All-in-one security (Firewall, IDS, AV)}$
- NGFW 🖋 → Deep packet inspection, application-layer filtering
- Layer 4 vs. Layer 7 \overline{a} \rightarrow
 - L4 (Transport) \rightarrow Blocks traffic by IP/Port
 - L7 (Application) → Blocks based on content (HTTP, DNS filtering)

Secure Communication/Access I

- VPN [♥] → Encrypts remote access traffic
- TLS/IPSec \bigcirc \rightarrow TLS for web, IPSec for network encryption
- SD-WAN ^③ → Secure, flexible network for remote offices
- SASE I → Cloud-based security & networking

🔷 Selecting Effective Controls 🔽

- Use firewalls, IPS, WAFs to filter traffic
- Apply zero-trust principles (Verify first, trust never)
- Segment networks to reduce lateral movement

- **Device Placement & Zones** $\[Partial] \rightarrow$ Secure hardware & segment networks
- Failure Modes $\blacksquare \cong \rightarrow$ Fail-open (risky), Fail-closed (secure but disrupts)
- **Network Security** $\oplus \rightarrow$ IPS, Jump Server, Load Balancer, Proxy
- Firewalls $\leftrightarrow \rightarrow$ WAF (Web), UTM (All-in-One), NGFW (Advanced Filtering)

• Communication areas → VPN, TLS/IPSec, SD-WAN, SASE

3.3 Data Protection Strategies (Quick Notes) 🚀

🔷 Data Types 📂

- **Regulated** \blacksquare \rightarrow GDPR, HIPAA (Legal requirements)
- **Trade Secret** \nearrow \rightarrow Proprietary business info (Formulas, strategies)
- Intellectual Property (IP) $\widehat{III} \rightarrow Copyrights$, patents, trademarks
- Financial $\leq \rightarrow$ Banking records, credit card info
- Human/Non-Human Readable ⁽⁹⁾ → Encrypted vs. plain text data

🔷 Data Classifications 🕃

- Sensitive $\implies \rightarrow$ Needs encryption (SSNs, medical records)
- **Confidential** ⁽ⁱ⁾ → Internal-only (Company plans)
- **Public** \bigcirc \rightarrow No security needed (Website content)
- **Restricted** ^(S) → Limited access (Government secrets)
- **Private** $\triangleq \rightarrow$ Personal, customer-related data
- **Critical** \square \rightarrow Affects operations if lost (Production databases)
- 🔷 Data States & Protection 🎙
 - At Rest \bigcirc \rightarrow Stored data (Encrypt with AES-256)
 - In Transit $\mathscr{G} \rightarrow$ Moving data (Secure with TLS, VPN)
 - In Use $\square \rightarrow$ Being processed (Memory encryption, access controls)

🕈 Security Methods 🕃

- Geographic Restrictions ⁽²⁾ → Block access from certain locations
- Encryption $\nearrow \rightarrow$ Protects data in all states (AES, RSA, ECC)
- Hashing *#* → Ensures data integrity (SHA-256)
- Masking $\Re \rightarrow$ Hides sensitive info (e.g., credit card ****1234)
- **Tokenization** \bigcirc \rightarrow Replaces real data with tokens

- **Obfuscation** \bowtie \rightarrow Scrambles data to make it unreadable
- Segmentation $\boxtimes \rightarrow$ Separate networks for different data types
- **Permission Restrictions** $\widehat{}$ \rightarrow Least privilege, role-based access

Skim-friendly Recap:

- Data Types *→* Regulated, IP, Financial, Confidential
- Classification 🗳 → Public, Private, Restricted, Critical
- States \bigcirc \rightarrow At Rest (AES), In Transit (TLS), In Use (Access Control)
- Protection $\P \rightarrow$ Encrypt, Hash, Mask, Tokenize, Restrict

3.4 Resilience & Recovery in Security Architecture (Quick Notes) 🚀

🔷 High Availability (HA) 🗟

- Load Balancing $4/2 \rightarrow$ Distributes traffic to prevent server overload
- **Clustering** $\mathscr{O} \rightarrow$ Multiple systems work as one (failover protection)
- Site Considerations III
 - Hot Site \blacklozenge \rightarrow Fully operational backup (minimal downtime)
 - Warm Site [™] → Partial backup (needs some setup)
 - Cold Site [®] → Just space & power, requires full setup
 - Geographic Dispersion \bigcirc \rightarrow Backups in different locations for disaster recovery

🔷 Platform Diversity 💻

- **Multi-Cloud** [△] → AWS + Azure + GCP for redundancy
- Hybrid Systems \bigcirc \rightarrow Combining on-prem & cloud for flexibility

Continuity of Operations

- Disaster Recovery Plan (DRP) $\blacksquare \rightarrow$ Step-by-step plan for recovery
- Business Continuity Planning (BCP) → Keeping operations running after a disaster
- 🔷 Capacity Planning 📏
 - **People 11** → Staff availability for emergencies
 - **Technology** \blacksquare \rightarrow Sufficient resources (servers, storage)
 - Infrastructure $\square \rightarrow$ Power, cooling, networking
- 🔷 Testing & Validation 🔽
 - Tabletop Exercises \gg \rightarrow Simulated discussions on disaster response
 - Failover Testing \bigcirc \rightarrow Switching systems to test redundancy
 - Simulation $\stackrel{\text{Result}}{\to}$ Running disaster drills to check preparedness

🔷 Backup Strategies 💾

- Onsite vs. Offsite ⓒ → Local backups vs. cloud storage
- **Backup Frequency** $\overline{\mathbb{Z}} \rightarrow$ Daily, Weekly, Incremental, Differential
- Encryption $\widehat{\blacksquare} \rightarrow$ Protect backups from theft
- Snapshots 🛍 → Instant state copies for fast recovery
- **Replication** $\stackrel{>}{\succ}$ \rightarrow Continuous data syncing to another system
- Journaling $\blacksquare \rightarrow$ Keeps logs of all transactions for rollback

🔷 Power Management 🗲

- Generators 🕍 → Backup power for long outages
- Uninterruptible Power Supply (UPS) $\blacksquare \rightarrow$ Short-term power for safe shutdowns

- Sites → Hot (Fast), Warm (Partial), Cold (Setup Needed)
- Diversity I → Multi-Cloud, Hybrid
- **Continuity Planning** *■* → DRP, BCP, Capacity Planning
- **Testing** \checkmark \rightarrow Tabletop, Failover, Simulation
- **Backups** \square \rightarrow Onsite/Offsite, Encryption, Snapshots, Replication

• **Power** $\not>$ \rightarrow Generators, UPS

4.1 Security Techniques for Computing Resources (Quick Notes) 🚀

♦ Secure Baselines □

- Establish $\blacksquare \rightarrow$ Define security settings (OS hardening, configurations)
- **Deploy** $\mathscr{G} \to \mathsf{Apply}$ baselines to systems (servers, workstations, cloud)
- **Maintain** \bigcirc \rightarrow Regular updates & security checks

🔷 Hardening Targets 🔐

- Mobile Devices \blacksquare \rightarrow Encrypt, enable remote wipe, disable USB transfer
- Workstations $\blacksquare \rightarrow$ Disable unnecessary services, enforce MFA
- Switches/Routers $\bigoplus \rightarrow$ Secure SSH access, disable unused ports
- Cloud [△] → IAM roles, encryption, security groups
- Servers $\blacksquare \rightarrow$ Patching, least privilege, log monitoring
- ICS/SCADA $\not>$ \rightarrow Air-gapped networks, firewall rules
- Embedded/IoT \longrightarrow \rightarrow Change default credentials, update firmware
- **RTOS** $\overline{\mathbf{X}} \rightarrow$ Real-time security policies (medical, automotive)

🔷 Wireless Devices 💷

- Installation Considerations $\overline{I\!I\!I} \to$
 - Site Surveys \bigcirc → Optimize Wi-Fi placement
 - Heat Maps $\blacklozenge \rightarrow$ Detect weak signal areas

Mobile Security 📲

- MDM (Mobile Device Management) $\Psi \rightarrow$ Enforce security policies remotely
- Deployment Models $\mathscr{G} \rightarrow$

- **BYOD** \rightarrow Employee's device (high risk)
- \circ **COPE** \rightarrow Company-owned, personal use allowed
- \circ CYOD \rightarrow Employee chooses from approved devices
- Connection Methods $\mathscr{O} \rightarrow$ Secure Wi-Fi, Cellular, Bluetooth

🔷 Wireless Security Settings 🏛

- WPA3 $\Sigma \rightarrow$ Strongest Wi-Fi encryption
- **RADIUS** *P* → Centralized authentication
- Cryptographic Protocols $\cong \rightarrow$ TLS, AES for secure connections
- Authentication Protocols → EAP, PEAP, 802.1X

lacksquare Application Security 🛠

- Input Validation ✓ → Prevents SQLi, XSS
- Secure Cookies ^(©) → Stops session hijacking
- Static Code Analysis $\blacksquare \rightarrow$ Detects vulnerabilities before deployment
- Code Signing ∠ → Ensures software authenticity

Additional Security Measures

- Sandboxing [≤] → Isolates untrusted applications
- Monitoring $\mathbf{II} \rightarrow \text{Logs}$, SIEM, anomaly detection

- **Baselines** $\square \rightarrow$ Define, Deploy, Maintain
- Hardening 🔐 → Mobile, Workstations, Cloud, ICS, IoT
- Wireless 💷 → WPA3, RADIUS, Site Surveys
- Mobile Security 📲 → MDM, BYOD, COPE, CYOD
- Apps $\mathcal{K} \rightarrow$ Input Validation, Secure Cookies, Code Signing
- Extras $\square \rightarrow$ Sandboxing, Monitoring

4.2 Hardware, Software, and Data Asset Management (Quick Notes) 🚀

🔷 Acquisition & Procurement 📦

- Vet Vendors $\mathbf{\hat{s}} \rightarrow$ Ensure trusted suppliers (no pre-installed malware)
- Security Requirements $\widehat{=} \rightarrow$ Compliance (ISO, NIST, GDPR) before purchase

🕈 Assignment & Accounting 🔳

- **Ownership** $\mathbf{L} \rightarrow$ Track device responsibility
- Classification ^Q→ Label as Public, Private, Confidential, Restricted

🕈 Monitoring & Asset Tracking 😂

- Inventory Management □ → Track all hardware/software
- Enumeration $\square \rightarrow$ Identifying and logging active devices

Disposal & Decommissioning

- Sanitization $\checkmark \rightarrow$ Secure wiping before disposal
- **Destruction** ^{*}→ Physical shredding of storage devices
- Data Retention $\blacksquare \rightarrow$ Define policies for how long data is stored

- **Procurement)** → Secure vendors & compliance
- **Tracking** \bigcirc \rightarrow Ownership, classification, inventory
- **Disposal a** → Wipe, Destroy, Certify

4.3 Vulnerability Management (Quick Notes) 🚀

ullet Identification Methods \mathbb{Q}

- Vulnerability Scans → Detects outdated software & weak settings
- Application Security Testing $\mathcal{K} \rightarrow$
 - Static Analysis $\blacksquare \rightarrow$ Checks source code for flaws
 - **Dynamic Analysis** \bigcirc \rightarrow Tests running apps for security holes
 - Package Monitoring $\widehat{\Psi} \rightarrow$ Tracks third-party dependencies
- Threat Feeds & Intelligence $\mathbf{\underline{s}}$ \rightarrow
 - **OSINT** $\blacksquare \rightarrow$ Publicly available data (threat reports)
 - **Proprietary Threat Feeds** \implies \rightarrow Paid services with latest threats
 - Info-Sharing Groups $> \rightarrow$ ISACs, government alerts
- **Penetration Testing** [©]^{*} → Simulated real-world attacks
- **Bug Bounty Programs Š** → Rewards for ethical hackers
- Audits & System Reviews II → Ensuring policy compliance

🔷 Vulnerability Analysis 📉

- False Positives $\bigcirc \rightarrow$ Alerts that aren't real threats
- False Negatives \land \rightarrow Missed threats
- **Prioritization** [©] → High-risk vulnerabilities get patched first
- Scoring Systems III →
 - **CVSS** $\Sigma \rightarrow$ Rates vulnerability severity (Critical, High, Medium, Low)
 - **CVE** $\overrightarrow{\sim}$ → Catalogs known vulnerabilities

🕈 Response & Remediation 😂

- **Patching** $\checkmark \rightarrow$ Fix vulnerabilities with software updates
- Segmentation ≅ → Isolate vulnerable systems
- **Compensating Controls** [♥] → Extra security while awaiting patches
- **Exception Handling** $\land \rightarrow$ When patches can't be applied

Validation of Fixes

- **Rescanning** \bigcirc \rightarrow Ensure patching was successful
- Audits & Reports $\square \rightarrow$ Verify security improvements

Skim-friendly Recap:

- Identify $\bigcirc \rightarrow$ Scans, Pen Testing, Bug Bounties
- Analyze $\square \rightarrow$ False Positives, Prioritization (CVSS, CVE)
- **Respond** \checkmark \rightarrow Patch, Segment, Apply Controls
- Validate $\checkmark \rightarrow$ Rescan, Audit

4.4 Security Alerting & Monitoring (Quick Notes) 🚀

Monitoring Computing Resources II

- Systems ➡ → Servers, endpoints
- Applications ♥ → Web, databases
- Infrastructure $\bigoplus \rightarrow$ Network, cloud, IoT

Security Activities Security Activities

- Log Aggregation $\overrightarrow{P} \rightarrow$ Centralized logging (SIEM)
- Alerting ^{III} → Notifications on suspicious activity
- Scanning → Continuous vulnerability scans
- **Reporting** \square \rightarrow Security dashboards & insights
- Archiving $\widehat{\mathbf{m}} \rightarrow$ Store logs for forensic analysis
- Incident Response 🛱 \rightarrow
 - **Quarantine** \rightarrow Isolate infected machines
 - Alert Tuning $\checkmark \rightarrow$ Reduce false positives

🔷 Monitoring Tools 🛠

- Agents vs. Agentless \bigcirc \rightarrow On-device monitoring vs. network scans
- SIEM $\square \rightarrow$ Logs & correlates security events (Splunk, Microsoft Sentinel)
- Antivirus ♥ → Detects known malware
- DLP (Data Loss Prevention) 🔐 → Stops unauthorized data transfers
- SNMP Traps $\mathbb{N} \to \text{Detects network changes}$
- **NetFlow** [⊕] → Monitors traffic patterns
- Vulnerability Scanners $\sim \rightarrow$ Identifies weak spots

Skim-friendly Recap:

- What's Monitored? II → Systems, Apps, Network
- Security Activities 🕑 → Logging, Alerts, Scanning, Reports
- Monitoring Tools $\mathcal{K} \rightarrow SIEM$, Antivirus, DLP, NetFlow

4.5 Identity & Access Management (IAM) (Quick Notes) 🚀

Firewalls & Access Control

- Firewall Rules $\blacksquare \rightarrow$ Allow/block traffic based on policies
- Access Lists (ACL) → Restrict access to specific IPs/ports
- Ports/Protocols ⊕ → Secure unused ports (disable Telnet, open SSH)
- Screened Subnets III → DMZ for public-facing services

◆ Intrusion Detection & Prevention

- **IDS (Detects)** \bigcirc \rightarrow Monitors & alerts but doesn't block
- IPS (Prevents) ³ → Blocks suspicious activity automatically
- Signature-Based IDS *→* Detects known threats
- Behavior-Based IDS · → Detects anomalies (zero-day attacks)

🔷 Web & Email Security 📧

- Web Filtering ③ → Blocks malicious sites
- Centralized Proxy ⓒ → Controls internet access
- URL Scanning $\swarrow \rightarrow$ Checks links before opening
- Content Categorization $\overrightarrow{P} \rightarrow$ Filters based on topic (social media, gambling)

🔷 Operating System Security 🏴

- **Group Policy 2** → Enforce security settings in Windows
- SELinux & AppArmor 🔐 → Linux access controls

Secure Protocols Secure Protocols

- **Protocol Selection** $\blacksquare \rightarrow$ Use SSH, SFTP over Telnet, FTP
- **Port Selection** \blacksquare \rightarrow Close unused ports
- Transport Methods **%** → TLS, IPSec for encrypted traffic

🔷 Advanced Security Tools 🋠

- **DNS Filtering** \bigcirc \rightarrow Prevents access to malicious domains
- Email Security [™] →
 - **DMARC** \blacksquare \rightarrow Protects against spoofing
 - **DKIM** \nearrow \rightarrow Email signing for authenticity
 - SPF \checkmark \rightarrow Verifies sender identity
- File Integrity Monitoring (FIM) \bigcirc \rightarrow Detects unauthorized file changes

- **DLP (Data Loss Prevention)** \implies → Blocks data leaks
- NAC (Network Access Control) \bigcirc \rightarrow Ensures only authorized devices connect
- EDR/XDR ♥ → Endpoint/Extended Detection & Response
- User Behavior Analytics (UBA) $\frac{1}{20}$ \rightarrow Detects unusual user actions

Skim-friendly Recap:

- Firewall Rules \blacklozenge \rightarrow ACLs, Screened Subnets
- IDS/IPS ♥ → Detects & Blocks Threats
- Web & Email Security [™] → Filtering, URL Scanning
- OS Security I → Group Policy, SELinux
- Secure Protocols ⓒ → TLS, IPSec, SSH
- Advanced Security Tools $\mathcal{K} \rightarrow \text{DNS}$ Filtering, DLP, NAC, EDR

4.6 IAM & Access Controls (Quick Notes) 🚀

🔷 User Management & Authentication 🔑

- **Provisioning & De-Provisioning** → Adding/removing users securely
- Permissions → Role-based access control (RBAC)
- Identity Proofing □ → Verifying users before granting access
- Federation ⁽³⁾ → Single sign-on (SSO) across multiple organizations
- SSO (Single Sign-On) $\mathscr{O} \rightarrow$ One login for multiple services

Access Control Models

- Mandatory Access Control (MAC) = → Strict rules (Government systems)
- Discretionary Access Control (DAC) SS → Owners decide permissions
- Role-Based Access Control (RBAC) $\mathfrak{M} \rightarrow \mathsf{Permissions}$ based on job roles
- **Rule-Based Access Control** $4/4 \rightarrow$ Dynamic rules (Time-based access)
- Attribute-Based Access Control (ABAC) [—] → Access based on attributes (device, location)
- Time-Based Restrictions $\overline{\mathbb{Z}} \rightarrow$ Blocks access outside working hours
- Least Privilege Principle are → Only allow minimum access needed

- Multi-Factor Authentication (MFA) *P*
 - Factors: Something You...
 - Know (Password) 🔡
 - Have (Smart Card, OTP)
 - o Are (Biometrics) ₽
 - Somewhere You Are (Geo-Location) ⁹

Password Security

- **Best Practices** $\underline{\mathbb{Y}} \rightarrow \text{Length} > \text{Complexity}$
- Password Managers *→* Generate & store securely
- Passwordless Authentication *^{sf}* → Biometrics, Security Keys

Privileged Access Management (PAM)

- Just-in-Time Permissions $\overline{\mathbb{Z}} \rightarrow$ Grant access only when needed
- **Password Vaulting** \cong \rightarrow Secure storage for admin credentials
- Ephemeral Credentials \square \rightarrow Temporary access keys

Skim-friendly Recap:

- User Management $\bigcirc \rightarrow$ Provisioning, SSO, Federation
- Access Models □ → MAC, DAC, RBAC, ABAC
- MFA $\stackrel{P}{\sim}$ \rightarrow Password, OTP, Biometrics, Geo-Location
- Password Security a→ Managers, Passwordless Auth
- PAM ♥ → Just-in-Time, Vaulting, Ephemeral Keys

4.7 Incident Response Process (Quick Notes) 🚿

◆ Incident Response Steps

1. **Preparation** $\square \rightarrow$ Policies, training, tools in place

- 2. Detection & Analysis $\bigcirc \rightarrow$ Identify the incident, assess impact
- 3. Containment $\stackrel{\text{\tiny permission}}{\longrightarrow}$ Stop the spread (Network isolation, account lockout)
- 4. Eradication $\mathcal{K} \rightarrow$ Remove the threat (Patching, malware removal)
- 5. **Recovery** \bigcirc \rightarrow Restore systems, monitor for re-infection
- 6. Lessons Learned $\blacksquare \rightarrow$ Improve processes, update security measures

🕈 Roles & Responsibilities 👥

- Incident Response Team (IRT) =→ Handles incidents
- Management II → Approves actions
- Legal & Compliance $4/2 \rightarrow$ Ensures reporting requirements
- **PR/Communications ♥** → Manages public disclosures

🔷 Incident Types 🚨

- Malware $\Longrightarrow \rightarrow$ Virus, Ransomware
- Unauthorized Access *P* → Hacking, Credential Theft
- Insider Threat III → Employee misuse
- Data Breach $\overrightarrow{P} \rightarrow PII$, IP theft
- **Denial-of-Service (DoS/DDoS)** [₩] → Service disruption

Skim-friendly Recap:

- Steps \bigcirc \rightarrow Prepare, Detect, Contain, Eradicate, Recover, Review
- Roles $\mathfrak{M} \rightarrow \mathsf{IRT}$, Management, Legal, PR
- Incident Types ³ → Malware, Unauthorized Access, Insider Threats

🚸 Quick & structured for fast review! 🚀

4.8 Digital Forensics (Quick Notes) 🚀

🔷 Forensic Process 🔍

- 1. **Identification** \square \rightarrow What data is relevant?
- 2. Collection $\stackrel{\bullet}{\bullet}$ \rightarrow Securely gather evidence
- 3. **Preservation** \cong \rightarrow Maintain chain of custody
- 4. Examination \rightarrow Analyze logs, files, and metadata
- 5. Analysis $\blacksquare \rightarrow$ Correlate findings
- 6. **Reporting** $\blacksquare \rightarrow$ Document conclusions

🔷 Forensic Artifacts 🕃

- Memory Dumps III → Captures live RAM data
- Disk Imaging [®] → Exact copy of storage
- Log Analysis $\overrightarrow{P} \rightarrow$ SIEM logs, network traffic
- **Metadata** [←] → Timestamps, file access history

🔶 Integrity & Legal Considerations 🚇

- Chain of Custody $\mathcal{O} \rightarrow$ Document every evidence transfer
- Hashing $\blacksquare \rightarrow$ Verify file integrity (SHA-256, MD5)
- Legal Compliance $\blacksquare \rightarrow$ GDPR, HIPAA, PCI-DSS regulations

Skim-friendly Recap:

- **Process** \bigcirc \rightarrow Identify, Collect, Preserve, Analyze, Report
- Artifacts *[™]* → Memory, Disk, Logs, Metadata
- Legal $4/2 \rightarrow$ Chain of Custody, Hashing, Compliance

🔶 Concise & easy to memorize! 🚿

4.9 Security Governance & Risk (Quick Notes) 🚀

- Security Policies II
 - Acceptable Use Policy (AUP) \checkmark \rightarrow Defines proper system use

- Data Classification Policy *[™]* → Labels sensitive data
- Access Control Policy are → Who can access what?
- Incident Response Policy $\square \rightarrow$ How to handle security breaches
- Disaster Recovery (DRP) III → Ensures business continuity

🔷 Risk Management 🎯

- Risk Assessment \land \rightarrow Identify threats & vulnerabilities
- **Risk Mitigation** $\P \rightarrow$ Controls to reduce risk
- Risk Acceptance $\stackrel{M}{\longrightarrow} \rightarrow$ Live with it if low impact
- Risk Transfer $\blacksquare \rightarrow$ Buy cyber insurance
- **Risk Avoidance** \times \rightarrow Eliminate risky activities

🕈 Compliance & Frameworks 🏛

- ISO 27001 \implies \rightarrow Global security standard
- **NIST** $\square \rightarrow$ US security guidelines
- **GDPR** \blacksquare \rightarrow EU data protection law
- HIPAA 🖺 → US healthcare security law
- PCI-DSS ⁼⁼ → Payment card security standard

- **Policies** $\blacksquare \rightarrow AUP$, Data Classification, DRP
- Risk [©] → Assess, Mitigate, Accept, Transfer, Avoid
- Compliance $\widehat{\mathbf{II}} \rightarrow$ ISO, NIST, GDPR, HIPAA, PCI-DSS

5.1 Effective Security Governance (Quick Notes) 🚀

🔷 Governance Framework 🔳

- Guidelines □ → General best practices (Not strict rules)
- - AUP \checkmark \rightarrow Defines acceptable system use
 - InfoSec Policies \implies \rightarrow Data protection guidelines
 - **BCP/DRP** \longrightarrow Plans for keeping business running after incidents
 - Incident Response \square \rightarrow Steps to handle breaches
 - SDLC $\mathcal{K} \rightarrow$ Secure software development
 - Change Management \bigcirc \rightarrow Controls for system modifications

🔷 Security Standards 🏛

- **Password Rules** \nearrow \rightarrow Complexity, expiration
- Access Control → Least privilege, role-based access
- **Physical Security** $\widehat{=}$ \rightarrow Badges, cameras, guards
- Encryption $\cong \rightarrow$ Data protection rules (AES, TLS)

Security Procedures X

- Change Management ⓒ → Review, approve, implement changes
- **Onboarding/Offboarding** $\mathfrak{M} \rightarrow \operatorname{Grant/remove}$ system access
- Playbooks *→* Step-by-step guides for security events

External Considerations

- **Regulatory ■** → GDPR, HIPAA, PCI-DSS compliance
- Legal $4/2 \rightarrow$ Laws governing data protection
- Industry Standards III → NIST, ISO 27001
- Geographic Rules \bigcirc \rightarrow Local, national, global security laws

🔷 Governance Structures 🎆

- **Boards** $\widehat{\mathbf{m}} \rightarrow$ High-level decision-making (CISOs, execs)
- **Committees** ^{>>} → Security working groups
- Government Entities $\widehat{\mathbf{m}} \rightarrow \text{Regulatory bodies}$
- Centralized vs. Decentralized $4/2 \rightarrow$ One authority vs. distributed control

Roles & Responsibilities 11

- **Owners** $P \rightarrow$ Decide how data is used
- Controllers $\mathcal{K} \rightarrow$ Define security measures
- Processors 🏟 → Handle data on behalf of owners
- Custodians/Stewards *[™]* → Maintain and protect data

Skim-friendly Recap:

- Framework $\blacksquare \rightarrow$ Policies, Standards, Procedures
- **Compliance** \bigcirc \rightarrow Regulatory, Legal, Industry, Geographic
- Governance IIII → Boards, Committees, Centralized/Decentralized
- Roles $\mathfrak{M} \rightarrow$ Owners, Controllers, Processors, Custodians

5.2 Risk Management Process (Quick Notes) 🚀

ullet Risk Identification & Assessment ${}^{ extsf{Q}}$

- **Risk Identification** \land \rightarrow Find potential threats & vulnerabilities
- Risk Assessment $\square \rightarrow$ How often do we assess?
 - Ad Hoc $\mathcal{K} \rightarrow$ One-time, no set schedule
 - **Recurring** \bigcirc \rightarrow Periodic reviews (monthly, yearly)
 - **One-Time** \bigcirc \rightarrow Major project-specific assessments
 - **Continuous** \bigcirc \rightarrow Ongoing monitoring for real-time risks

🔷 Risk Analysis 📉

- **Qualitative** \blacksquare \rightarrow Subjective (high, medium, low risk)
- Quantitative Š → Uses numbers & financial impact
- Single Loss Expectancy (SLE) [™] → Cost of one incident
- Annualized Rate of Occurrence (ARO) \bigcirc \rightarrow How often it happens per year
- Annualized Loss Expectancy (ALE) m → SLE × ARO (Yearly financial impact)
- **Probability** $\bigcirc \rightarrow$ How likely is the risk?
- Likelihood \rightarrow Frequency of occurrence (low, medium, high)
- Exposure Factor (EF) $\stackrel{4}{\sim} \rightarrow \%$ of asset loss per incident
- Impact \square \rightarrow How severe is the damage? (Financial, reputational, operational)
- 🔷 Risk Register 📃
 - Key Risk Indicators (KRIs) $\theta \rightarrow$ Warning signs of potential threats
 - **Risk Owners** $\mathfrak{M} \rightarrow \mathsf{Assigned person/team responsible for managing the risk$
 - Risk Threshold [™] → Maximum risk level before action is taken
- 🕈 Risk Tolerance vs. Risk Appetite 🚇
 - **Risk Tolerance** \square \rightarrow How much risk can we handle per project?
 - **Risk Appetite** $\bowtie \rightarrow$ Overall company approach to risk:
 - **Expansionary** \checkmark \rightarrow Willing to take more risks
 - **Conservative** \rightarrow Avoids risk as much as possible
 - **Neutral** $4/4 \rightarrow$ Balanced approach

🕈 Risk Management Strategies 🚀

- **Transfer** \blacksquare \rightarrow Buy insurance, outsource risk to third parties
- Accept $\stackrel{\text{\tiny{W}}}{\to}$ Decide to live with the risk
 - **Exemption** \bigcirc \rightarrow Formal approval to operate despite risk
 - **Exception** $! \rightarrow$ Temporary bypass of risk controls
- Avoid \times \rightarrow Stop risky activities altogether
- **Mitigate** $\P \rightarrow$ Reduce risk impact with security controls (firewalls, encryption)

🔷 Risk Reporting & Business Impact Analysis (BIA) 🖬

- Risk Reporting $\blacksquare \rightarrow$ Document & communicate risk status
- Business Impact Analysis (BIA) → Evaluates how risks impact business operations
 - **Recovery Time Objective (RTO)** $\overline{\mathbb{Z}} \to Max$ downtime allowed before recovery
 - Recovery Point Objective (RPO) → Max data loss allowed (how often backups are needed)
 - Mean Time to Repair (MTTR) \checkmark \rightarrow Avg time to fix a failure
 - Mean Time Between Failures (MTBF) → Avg time between system failures

Skim-friendly Recap:

- Assessment \bigcirc \rightarrow Ad Hoc, Recurring, One-Time, Continuous
- Analysis $\square \rightarrow$ Qualitative (subjective) vs. Quantitative (numbers)
- Risk Factors \bigcirc \rightarrow SLE, ALE, ARO, EF, Impact
- **Register** $\square \rightarrow$ KRIs, Risk Owners, Thresholds
- **Risk Tolerance** → Expansionary, Conservative, Neutral
- Strategies $\mathscr{G} \rightarrow$ Transfer, Accept, Avoid, Mitigate
- **BIA** \square \rightarrow RTO (Downtime), RPO (Data Loss), MTTR (Fix Time), MTBF (Failure Gaps)

5.3 Third-Party Risk Assessment & Management (Quick Notes) 🚀

♦ Vendor Assessment

- **Penetration Testing** [©]^{*} → Test vendor security by simulating attacks
- **Right-to-Audit Clause** *■* → Allows company to inspect vendor security practices
- Internal Audit Evidence $\square \rightarrow$ Vendor must show proof of security assessments
- Independent Assessments [≜] → Third-party security evaluations
- Supply Chain Analysis ♥ → Ensuring all vendors & suppliers follow security standards

🔷 Vendor Selection 💝

- **Due Diligence** $\overline{\mathbb{II}}$ \rightarrow Background checks, financial stability, security policies
- Conflict of Interest $4/2 \rightarrow$ Ensure vendor does not have competing interests

🔷 Agreement Types 🔳

- Service-Level Agreement (SLA) → Defines service expectations (uptime, performance)
- Memorandum of Agreement (MOA) $\triangleq \rightarrow$ Formal contract with legal obligations
- Memorandum of Understanding (MOU) ⇒ → Non-binding agreement (partnership details)
- Master Service Agreement (MSA) ^b→ Long-term contract covering multiple projects
- Statement of Work (SOW) □ → Details specific work to be done under an agreement
- Business Partners Agreement (BPA) → Defines responsibilities between business partners

🔷 Vendor Monitoring 🕃

- Ongoing Evaluations \bigcirc \rightarrow Regular security reviews & compliance checks
- Security Questionnaires → Vendors answer security-related questions to assess risk
- Rules of Engagement $\emptyset \rightarrow$ Defines how security testing & audits are conducted

- Vendor Security \bigcirc \rightarrow Pen Testing, Audits, Supply Chain Analysis
- Selection [♥] → Due Diligence, Conflict of Interest

- Monitoring ⓒ → Questionnaires, Ongoing Audits, Rules of Engagement

5.4 Security Compliance (Quick Notes) 🚀

Compliance Reporting III

- Internal $\blacksquare \rightarrow$ Reports for internal audits, risk teams, and executives
- External ③ → Regulatory filings for GDPR, HIPAA, PCI-DSS, ISO 27001

Consequences of Non-Compliance

- Fines $\leq \rightarrow$ Heavy financial penalties (GDPR fines up to 4% of revenue)
- Sanctions \bigcirc \rightarrow Restrictions imposed by regulators
- **Reputational Damage □** → Loss of customer trust
- Loss of License \rightarrow Aevoked business certifications (PCI-DSS, financial services)
- **Contractual Impacts** [>] → Breach of service agreements = lawsuits

ullet Compliance Monitoring \bigcirc

- **Due Diligence/Care** $\xrightarrow{\text{Due}}$ \rightarrow Ensuring security compliance at all levels
- Attestation & Acknowledgment *>* → Employees/vendors confirm adherence
- Automation → Compliance tools (SIEM, GRC platforms) for real-time monitoring

🔷 Privacy & Legal Compliance 🔐

- Legal Implications $4/2 \rightarrow 3$
 - Local/Regional $\blacksquare \rightarrow$ State/country-specific laws (CCPA, GDPR)

- National \bigcirc \rightarrow Federal laws (HIPAA, SOX)
- \circ Global \bigcirc → International data laws (GDPR for EU, Data Sovereignty)
- Data Subject $\mathbf{L} \rightarrow$ Person whose data is collected
- Controller vs. Processor $\bigcirc \rightarrow$
 - \circ **Controller** \rightarrow Owns & decides how data is used
 - \circ **Processor** \rightarrow Processes data on behalf of the controller
- **Ownership** \nearrow \rightarrow Who controls, stores, and secures the data
- Data Inventory & Retention ♥ → Tracking where data is stored & retention policies
- **Right to be Forgotten** \bigcirc \rightarrow Individuals can request data deletion under GDPR

Skim-friendly Recap:

- **Reporting** *■* → Internal (Audits) vs. External (Regulators)
- Non-Compliance Risks \land \rightarrow Fines, Sanctions, Reputation Loss
- Monitoring \bigcirc \rightarrow Audits, Automation, Due Diligence
- **Privacy & Legal** \Rightarrow GDPR, Controllers, Processors, Right to be Forgotten

5.5 Audits & Assessments (Quick Notes) 🚀

🔷 Attestation 🔳

• Formal certification that security controls are in place & working

🔷 Internal Audits 🔍

- Compliance IIII → Ensures company follows policies & regulations
- Audit Committee $\square \rightarrow$ Oversees internal security reviews
- Self-Assessments $\nabla \rightarrow$ Internal teams evaluate their own security

🔷 External Audits 🌍

- **Regulatory** \xrightarrow{III} \rightarrow Compliance checks by government agencies (GDPR, HIPAA)
- Examinations $\widehat{\mathbf{m}} \rightarrow$ In-depth security reviews (banks, healthcare)
- Assessments II → Security posture evaluations by external firms
- Independent Third-Party Audits [®] → Performed by external security auditors (SOC 2, ISO 27001)

🕈 Penetration Testing 🞯

- Physical III → Testing locks, security cameras, badge access
- Offensive $\mathscr{G} \rightarrow$ Simulating hacker attacks to find vulnerabilities
- **Defensive** $\P \rightarrow$ Blue team responding to attacks
- Integrated ⓒ → Combines offensive (red team) & defensive (blue team) strategies

🔶 Testing Environments 🔼

- Known Environment <u>A</u> → Tester has full system knowledge
- **Partially Known Environment** \square \rightarrow Tester has **some** system knowledge
- Unknown Environment $\Re \rightarrow$ Blind test (black-box testing)

🔷 Reconnaissance (Info Gathering) 🔎

- **Passive** [□]→ Observing publicly available data (OSINT, social media)

Skim-friendly Recap:

- Audits $\blacksquare \rightarrow$ Internal (Self, Compliance), External (Regulatory, Third-Party)
- Pen Testing S → Physical, Offensive, Defensive, Integrated
- Environments I → Known, Partially Known, Unknown
- **Recon** \bigcirc \rightarrow Passive (OSINT), Active (Network Scans)

5.6 Security Awareness Practices (Quick Notes) 🚀

- 🔷 Phishing Awareness 📧
 - Campaigns ^{©*} → Simulated phishing tests to educate employees
 - **Recognizing Phishing** \bigcirc \rightarrow Suspicious links, urgent messages, unknown senders
 - **Response to Phishing** \square \rightarrow Report, quarantine, block sender

◆ Anomalous Behavior Recognition

- Risky \land \rightarrow Login from unusual locations, mass file downloads
- **Unexpected** $\bowtie \rightarrow$ Employees accessing data outside their role
- Unintentional \bigcirc \rightarrow Accidental data sharing, weak passwords

🔷 User Training & Best Practices 🎓

- Policies & Handbooks $\blacksquare \rightarrow$ Documented security guidelines
- Situational Awareness → Recognizing threats in daily activities
- Insider Threats III → Employees misusing data (malicious or accidental)
- **Password Security** $\nearrow \rightarrow$ MFA, unique passwords, password managers
- **Removable Media & Cables** [□] → Avoid USBs from unknown sources
- Social Engineering $\aleph \rightarrow$ Phone scams, pretexting, tailgating prevention
- Operational Security (OPSEC) → Protecting company secrets (avoid oversharing)
- Hybrid/Remote Work $\triangleq \rightarrow$ VPN use, secure Wi-Fi, webcam cover

Reporting & Monitoring II

- Initial Reports *→* New security concerns reported immediately
- **Recurring Monitoring** ⓒ → Regular audits of security behavior

Awareness Development & Execution *#*

- **Development** $\square \rightarrow$ Build training programs based on threats
- Execution [©] → Workshops, phishing tests, security drills

Skim-friendly Recap:

- Phishing [™] → Simulated campaigns, Recognizing, Reporting
- Behavior Recognition \bigcirc \rightarrow Risky, Unexpected, Unintentional actions
- User Training \checkmark \rightarrow Passwords, Social Engineering, OPSEC, Remote Work
- Monitoring & Reporting II → Initial & Recurring logs
- **Execution** $\mathscr{G} \rightarrow$ Hands-on training, phishing tests, awareness drills

🔶 Quick, structured, and ready for last-minute review! 🚀